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1. Introduction range of a query. However, the PC has been criticized

for its update overhead and space requirement [7-9].
On-line analytical procgsing (OLAP) systems ma-  Several approaches have been proposed to address up-

nipulate very large volumes of historical data, typi- date overhead problem [1-3,7,8], and the blocked PC

cally modeled with a multi-dimensional data model Was proposed to reduce the space requirement [5].

known as a data cube, and provide decision support o

information to users. It is well known that the data Our contributions

cube is very sparse. Typically, valid cells in a data )

cube are between 0.0001% and 2% of all cells [6,7]. 10 reduce the space requirement of the PC, we pro-

One of the most important query classes in OLAP is POS€ a compression method for PCs, called the com-
a range-sum query. The evaluation of the range-sum Préssed SRPS. Our method is based on the space-

query consumes much time since it requires access to€icient relative prefix-sum (SRPS) technique in-
large volume of data. Generally, users of OLAP sys- t€nded to reduce the update overhead [8]. The com-
tems execute a sequence of queries interactively. Thus,pressed SRPS is a lossless compression method, and

OLAP systems should support efficient query evalua- gllows queries to be evaluated W.ithOUt Qecompress—
tion, no matter how large the volume of data to be ac- ing. To our knowledge, our work |s_the first attempt_
cessed. Therefore, to support the efficient evaluation of to Iossle:[ssly compress prefix-sums in the OLAP envi-
range-sum queries, the prefix-sum cube (PC) was pro- ronment.

posed [5]. The PC enables all range-sum queries to be

processed in constant time, regardless of the size of thez_ Related work

* Cotresponding author. The PC was proposed to achieve the efficient
E-mail address: hgkang@islab.kaist.ac.kr (H.-G. Kang). processing of range-sum queries in OLAP environ-
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(a) A box of a data cube (b) Abox of the SRPS cube

ments [5]. To do this, the PC stores the prefix-sums
of data. Given a cellcy, ..., cq) of a data cube, the
prefix-sum value of the cell can be calculated using

Fig. 2. Examples of a box of a data cube and corresponding box of
the SRPS cube.

c1 c2 cd
> Y DC. .. i) corresponding to the cells in the box. Since the box
i1=0ip=0  iy=0 of the data cube is sparse, the prefix-sums constructed

from the box has many repeating values. To compress

the box, we should represent the repeating values

concisely. Our basic idea is that the repeating values

can be represented by subcubes. A subcube can be
defined as follows.

whered is the dimensionality of the data cube, and

DC(i1, 2, ...,iq) isthe value of the celli1, i, ..., ig)

of the data cube. Fig. 1 illustrates the process for
computing the answer of a range-sum query in a PC.
The sum of Area_E can be computed with Area_A's

sum, Area_B’s sum, Area_C’'s sum and Area_D’s sum.
Therefore, a range-sum query can be processed by aDefinition 1 (Subcube). A subcube is part of a box.
constant numbet= 29) of cell accesses regardless of A subcube has the following properties.

the size of the query range, whetds the dimension-

ality of the PC. e The dimensionality of a subcube is identical to the

To solve the update cost problem of the PC, dimensionality of the box containing the subcube.
Riedewald et al. [8] proposed the SRPS technique that e All the cells in a subcube have the same value
partitions a PC into a set dfoxes. The prefix sums called Vsubcube-

are computed and stored relative to the first cell of a e Let the address of the first cell (cell with the
box. By partitioning the PC, the SRPS technique can smallest indices) be the first address, and the
reduce the number of PC cells affected by an updateto ~ address of the last cell (cell with the largest
a cell of a data cube. indices) the last address. The last addresses of all
The blocked PC was proposed to reduce the space  the subcubes are identical to that of the box.

overhead of the PC [5]. The blocked PC stores a
prefix-sum for each block of the corresponding data A subcube can be represented as a pair of the
cube. The space for storing a blocked PC is much boundary of the subcube and the valigncune. REP-
smaller than that for storing the corresponding PC. resenting a subcube as a pair is very compact because
However, the query processing with the blocked PC values of all cells in the subcube are represented by
requires the data cube. It takes more time than that Vsuocube- The boundary of a subcube can be repre-
with the PC since all the range-sum queries are sented by two addresses, the first address and the last
answered by accessing and combinifigp2efix-sums address. Fig. 3 shows subcubes which are extracted
as well as some cells from the data cube, wheis from the box in Fig. 2(b). Subcubes 2 and 3 are created
the dimensionality of the blocked PC. by values 4 and 5 in the data cube shown in Fig. 2(a),

respectively. Subcube 4 iseated by the intersection

of subcube 2 and subcube 3. The creation of subcube 5
3. The compressed SRPS method is by value 7 in the data cube. A region outlined by

dashed lines in Fig. 3 is the private region of the sub-

In this section, we present the compressed SRPScube. The concept of private regions is used in looking

method that compresses the prefix-sums in boxes. up the value stored at a cell of a compressed box, and
Fig. 2 shows a box of a data cube and the prefix-sums will be explained in Section 4.
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Fig. 3. Subcubes.

The address of a cell is composed of several
coordinates. The number of coordinates of the address
is equal to the dimensionality of the box. We can
store an offset value instead of several values of the
coordinates. The offset is a distance from the first cell
to the cell in an uncompressed box [10]. The distance
can be computed with either the row-major order or
the column-major order. For example, with the row-
major order, the offset of addreé3, 4) is 4 x 6 + 3.
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box is “(0,0), (3,4), (13,5), (15,9), (22, 16)". The
subcubes in the final result are ordered in an increasing
order of the subcubes’ offsets.

Our method inputs a dataibe partitioned into a set
of boxes, and produces a compact representation of the
prefix-sums for each box. The algorithm compresses
the set of boxes one by one. Moreover, during com-
pression of ad-dimensional box, the algorithm only
keeps two(d — 1)-dimensional arrays which are part
of the box.

The algorithm shown in Fig. 5 compresses a box
of a two-dimensional data cube by scanning the box
only once. For each cell, the algorithm computes the
prefix-sum of the cell, and checks whether the PC's
cell corresponding to the cell is the first cell of a
subcube. If the PC's cell is the first cell of a subcube,
the algorithm creates a cqract representation of the
subcube with the address and the value of the PC'’s
cell. As shown in Fig. 4, the prefix-sum of the cell
(i, j) can be computed with the prefix-sum of the cell
(i — 1, ), the prefix-sum of the celii, j — 1), the
value of the cell(i, j) and the prefix-sum of the cell
(i —1,j —1). If the prefix-sum of the celli, j) is
different from the prefix-sum of the cell — 1, j) and

The offset of a subcube is the offset of the first cell of the Prefix-sum of the celii, j — 1), the celli, j) is

the subcube.

A compressed box consists of a sequence of su
cubes. LetS be a compressed box, afff] be theith
subcube of. If i < j, the offset ofS[i] is smaller than
that of S[j]. S[i] is overlapped bys[i + 1], S[i + 2],
..., S[n] wheren is the number of subcubes i

Table 1 shows a compact representation of the

b-

the first cell of a subcube. As mentioned above, the

computation for the prefix-sum of the cell requires

the previous row and the current row of the PC only.
Thus, in order to reduce the space requirement, the
algorithm keeps only the previous rowsf_row) and

the current row £c_row) of the prefix-sums. The
algorithm processes the first cell in a row at lines 4-6.

subcubes depicted in Fig. 3. Subcube 2 is represented! N€ remaining cells in theow are processed at lines

by boundary((3, 0), (5,5)) and the value 4. Because

7-11. Thefor statement in lines 12-13 copies the

all subcubes have the same last address, we dovalues of c_row into p_row to process the next row.

not need to store the last addresses of subcubes.
Therefore, we only store the offset af,pcupe for
each subcube. The final result of compressing the

We can generalize the two-dimensional compres-

sion algorithm to thel/-dimensional compression al-
gorithm by replacing th&2 — 1)-dimensional arrays
w

ith (d — 1)-dimensional arrays. That is, the previ-

ous (2 — 1)-dimensional array=p_row) is replaced

Table 1

A compact representation of the subcubes

Subcube First address Last address OffsetVsubcube Data Cube Area : []

1 (0,0 (5,5) 0 0 L H

2 3,0 (5,5) 3 4 Value of Area:  PS[i, j] = PS[i-1, j] + PS[i, j-11 + VALIi, j] - PS[i-1, j-1]
3 (1’ 2) (5’ 5) 13 5 PS[i,j] = the prefix-sum of the cell (i, j)

4 (3 2) (5 5) 15 9 VAL, j] = the value of the cell (i, j)

5 4,3) (5,5 22 16

Fig. 4. Computation of a prefix-sum.
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Algorithm Compressed SRPS
input: DC (a box of a two-dimensional data cube)
output: CB (a compressed box)
Begin
1. Initialize p_row[] to zero // p_row is an array storing the previous row of the prefix-sums
2. Create the subculi€0, 0), DC[0][0])
3.for j =0toYsize— 1do{// Ysizeis the size of Y axis
4 c_rowO0] := p_row[0] + DCI[O][ /] // c_row is an array storing the current row of the prefix-sums
5 if (c_row0] # p_row[0])
6. Create the subcubéX j), c_row[0])
7 for i =1toXsize— 1do{// Xsizeis the size of X axis
8 c_rowi] :=c_rowi — 1] + p_rowi] + DC[i][j] — p_rowi — 1]

9. if (c_row[i]# p_rowi] and c_rowi] # c_rowi — 1])
10. Create the subculi€, j), c_row[i])
11.  }
12. for k=0ton—1do
13. p_rowk] := c_rowfk]
14.}
End.

Fig. 5. The compression algorithm.

by the previougd — 1)-dimensional array, and the cur- among those of subcubes containing the input cell.
rent (2 — 1)-dimensional array=£c_row) is replaced  The second step is to retubyncune Of the subcube.
by the current{d — 1)-dimensional array. In addition,

thefor statement at line 7 is replaced ly — 1) for Lemma 4.1. If a cell ¢1 is contained in the private
statements, and so is ther statement at line 12. The  region of a subcube S[i], S[i] has the largest offset
number of conditions at line 9 becomes among those of subcubes containing c1.

Proof. If the offset of S[i] is not the largest among
4. Looking up and updates those of subcubes containing, there isS[ j] such that
the offset ofS[j] is greater than that of[i] andcl is
In this section, we present the lookup algorithm and contained inS[j]. SinceS[j] overlapsS[i], c1 is not
the update algorithm. The lookup algorithm retrieves contained in the private region 6fi]. This contradicts
the value stored in a compressed box without decom- the assumption. Therefor§[i] has the largest offset
pressing it. This algorithm serves the core function for among those of subcubes containirlg O
the evaluation of the range sum queries. First, we ex-

plain the lookup algorithm. Looking up a cell canbe  Fig. 6 shows the lookup algorithm. Since the pairs
decomposed into two logical steps. The first step is to of 3 compressed box are sorted by the offset, the
search the subcube that has the private region contain-yumper of comparisons can be dramatically reduced
ing the cell. The private region of a subcube can be py ysing the binary search. The lookup algorithm is
defined as follows. composed of two parts. The first part, lines 1-13, is

the binary search to find the position to be started in
Definition 2 (Private region). Let S be a compressed  the subsequent linear lookup. The first part excludes
box, andS[i] be theith subcube ofS. The private  the subcubes with larger offsets than the offset of

region of S[i] is the part of the subcube that fiet the lookup cell from the candidate subcubes. The
overlapped by other subcubes B which have a  second part, lines 14-18, scans the pairs from the
greater offset. position found by the first part to downside, picks

up the subcube that has the largest offset among the
By Lemma 4.1, the first step can be replaced subcubes that contain the cell, and retuvgcupe Of
by searching the subcube that has the largest offsetthe subcube. The algorithm shown in Fig. 6 looks up
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Algorithm LookUp
input: CB (compressed box)
input: x, y (coordinates of the cell to be looked up)
output: Vgubcube
Begin
1. offset := offset value computed hy andy
2. low:=1
3. high := the number of pairs in thEB
4. while ((low+ 1) < high) {
5. mid:= (high+ low)/2

6.  offsety,q := offset value of thamid’s pair in theCB
7. if (offset < offsetyyig)
8. high := mid
9. dseif (offsetyg < offset)
10. low:=mid
11. ese
12. return Vg heupe Of themid's pair in theCB
13.}
14.for (i =high;0<i;i=i—1){
15.  (xi,y;) :=the first address of theh pair in theCB
16, if (v <xand y; <)
17. return Vg pcupe Of theith pair in theCB
18.}
End.

Fig. 6. The lookup algorithm.

Algorithm Update
input: CB (compressed box)
input: addr (address of the updated cell)
input: value (value to be added)
Begin
1. CheckCB whether there is a subcube whose first address is
equal toaddr
2. if (there is no subcube found in above scan) {
3. Create a subculseibcubel of addr (first address) and zero
(Vaubcube)
4. Create new subcubes using the intersectiosuladubel and
the subcubes i€B
5. Insertsubcubel and the new subcubes created in above step to
CB
6. }
7. Addvalue to the Vg pcube Values of subcubes whose boundaries
containaddr
End.

Fig. 7. The update algorithm.

a cell in a 2-dimensional box. The algorithm can be
easily extended for a higher dimensional box.
The update algorithm shown in Fig. 7 first checks

103

be created by the intersection of the new subcube and
the already existing subcubes. Finally, the algorithm
adds the value of the cell to tHéy,pcube Values of all

the subcubes whose boundaries contain the cell.

5. Experiments

We conducted several experiments to show the
quantitative effect of our method. The data cube
used in the experiments is 4-dimensional, and the
data stored in the data cube are randomly populated.
We partitioned the corresponding PC into a set of
disjoint boxes of equal size using the SRPS technique
proposed in [8]. All the experiments were conducted
on a Linux machine with a 700 MHz Pentium Il
processor, 512 MBytes main memory and a 20 GBytes
hard disk.

First, we measured the compression ratio of our
method. The compression ratio is expressed as 1
B/A, where A is the size of the original data angl
is the size of the compressed data (higher is better).
Fig. 8(a) shows the compression ratios lmwxes of
various sizes. Only 2% of cells in eatlox is valid.

The result indicates that the compression ratio on the
smallestbox is very high. However, as the size of
the box increases, the compression ratio decreases.
The reason is that, as the size of thex increases,
the number of subcubes created by the intersection of
other subcubes also increases.

Fig. 8(b) shows the compression ratios ofax
with the size of 5x 5 x 5 x 5 as a function of the per-
centage of valid cells. When the percentage of valid
cells is low, the compression ratio is very high. How-
ever, as the percentage of valid cells increases, the
compression ratio decreases. This is also due to the
reason mentioned above. Fig. 8(c) plots the compres-
sion ratios for boxes of various dimensionalities. Typ-
ically, as the dimensionality increases, the sparseness
also increases sharply [4,7]. In this experiment, the
length of one dimensionis fixed to 5, and 2% of cells is
valid when the dimensionality is 4. As the dimension-
ality increases, the compression ratio increases slowly.

In the next experiment, we measured the response

the compressed box whether there is a subcube whosdimes of range-sum queries executed on various cubes.
first address is equal to the address of the updated cell.Table 2 shows the parameters of the experiment. We
If not found, a new subcube corresponding to the cell randomly generated four synthetic data sets. Many
is inserted to the compressed box. More subcubes maydata cubes contain many small clustered multi-dimen-
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Table 2 '§ 2500 . —&—data cube

Experimental parameters g 2000 | I‘S’g’;gcd

Parameter Value g —W
g3 1500 G

The size of the data cube 155155 x 155 x 155 9 .____—__./"/.

Box size 5x5x5x5 § 1000 | QT e A

No. of boxes 923521 g 50| g——w—"—"

Page size 8 KBytes o

Buffer size 2000 pages é 0 ' : : :

Minimum size of one dimension of a 1 2 3 4

quer_y range_ . . 7 Percentage of valid cells(%)

Maximum size of one dimension of a

query range 13

Fig. 9. Performance of query processing.

sional data (dense regions), with sparse points scat-ing 8000 range-sum queries which are randomly gen-
tered around in the rest of the space [11]. To generate erated.

synthetic data sets which closely resemble real data, As shown in Fig. 9, the compressed SRPS method
we used a nonzero value generation method which shows the best performance. The response time of
consists of two steps. The first step randomly gener- fange-sum queries executed on compressed SRPS
ates nonzero values for random cells throughout the cubes increases as the percentage of valid cells in-
data cube, and the second step selects some dense ré&reases. The reason is that as the percentage of valid
gions and randomly generates nonzero values in thosecells increases, the compsgon ratio decreases. Since
dense regions. The method generates 20% of the to-the sizes of SRPS cubes with differing number of valid
tal valid cells in the first step and the remainder of cells are the same, the query performance of the SRPS
the total valid cells in the second step. Each tuple in is nearly constant regardless of the percentage of valid
these data sets contains attribute for each dimen-  cells. Like compressed SRPS, as the percentage of
sion and an attribute to store the measure value. Ta-valid cells increases, the response times of range-sum
ble 3 shows details of our generated data sets. Fig. 9queries executed on the data cube and the blocked PC
shows a comparison of the response times in execut-increases.

Table 3
Synthetic data sets

Data set A Data set B Data set C Data set D
Percentage of valid cells 1% 2% 3% 4%
Compression ratios 0.93 0.81 0.68 0.51
No. of dense regions 1539 3078 4617 6156
Size of a dense region 3010x 10x 10

No. of nonzero values in a dense region 3000
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