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On-line analytical processing (OLAP) systems ma
nipulate very large volumes of historical data, ty
cally modeled with a multi-dimensional data mod
known as a data cube, and provide decision sup
information to users. It is well known that the da
cube is very sparse. Typically, valid cells in a da
cube are between 0.0001% and 2% of all cells [6
One of the most important query classes in OLAP
a range-sum query. The evaluation of the range-
query consumes much time since it requires acces
large volume of data. Generally, users of OLAP s
tems execute a sequence of queries interactively. T
OLAP systems should support efficient query eval
tion, no matter how large the volume of data to be
cessed. Therefore, to support the efficient evaluatio
range-sum queries, the prefix-sum cube (PC) was
posed [5]. The PC enables all range-sum queries t
processed in constant time, regardless of the size o
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Several approaches have been proposed to addres
date overhead problem [1–3,7,8], and the blocked
was proposed to reduce the space requirement [5]

Our contributions

To reduce the space requirement of the PC, we
pose a compression method for PCs, called the c
pressed SRPS. Our method is based on the sp
efficient relative prefix-sum (SRPS) technique
tended to reduce the update overhead [8]. The c
pressed SRPS is a lossless compression method
allows queries to be evaluated without decompre
ing. To our knowledge, our work is the first attem
to losslessly compress prefix-sums in the OLAP en
ronment.

2. Related work

The PC was proposed to achieve the effici
processing of range-sum queries in OLAP envir
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Fig. 1. Range-sum query processing in a prefix-sum cube.

ments [5]. To do this, the PC stores the prefix-su
of data. Given a cell(c1, . . . , cd) of a data cube, the
prefix-sum value of the cell can be calculated using

c1∑

i1=0

c2∑

i2=0

· · ·
cd∑

id=0

DC(i1, . . . , id),

whered is the dimensionality of the data cube, a
DC(i1, i2, . . . , id) is the value of the cell(i1, i2, . . . , id)

of the data cube. Fig. 1 illustrates the process
computing the answer of a range-sum query in a
The sum of Area_E can be computed with Area_
sum, Area_B’s sum, Area_C’s sum and Area_D’s su
Therefore, a range-sum query can be processed
constant number(= 2d) of cell accesses regardless
the size of the query range, whered is the dimension-
ality of the PC.

To solve the update cost problem of the P
Riedewald et al. [8] proposed the SRPS technique
partitions a PC into a set ofboxes. The prefix sums
are computed and stored relative to the first cell o
box. By partitioning the PC, the SRPS technique
reduce the number of PC cells affected by an upda
a cell of a data cube.

The blocked PC was proposed to reduce the sp
overhead of the PC [5]. The blocked PC store
prefix-sum for each block of the corresponding d
cube. The space for storing a blocked PC is m
smaller than that for storing the corresponding P
However, the query processing with the blocked
requires the data cube. It takes more time than
with the PC since all the range-sum queries
answered by accessing and combining 2d prefix-sums
as well as some cells from the data cube, whered is
the dimensionality of the blocked PC.

3. The compressed SRPS method

In this section, we present the compressed SR
method that compresses the prefix-sums in bo
Fig. 2 shows a box of a data cube and the prefix-s
Fig. 2. Examples of a box of a data cube and corresponding bo
the SRPS cube.

corresponding to the cells in the box. Since the b
of the data cube is sparse, the prefix-sums constru
from the box has many repeating values. To comp
the box, we should represent the repeating va
concisely. Our basic idea is that the repeating va
can be represented by subcubes. A subcube ca
defined as follows.

Definition 1 (Subcube). A subcube is part of a box
A subcube has the following properties.

• The dimensionality of a subcube is identical to t
dimensionality of the box containing the subcu

• All the cells in a subcube have the same va
calledVsubcube.

• Let the address of the first cell (cell with th
smallest indices) be the first address, and
address of the last cell (cell with the large
indices) the last address. The last addresses o
the subcubes are identical to that of the box.

A subcube can be represented as a pair of
boundary of the subcube and the valueVsubcube. Rep-
resenting a subcube as a pair is very compact bec
values of all cells in the subcube are represented
Vsubcube. The boundary of a subcube can be rep
sented by two addresses, the first address and the
address. Fig. 3 shows subcubes which are extra
from the box in Fig. 2(b). Subcubes 2 and 3 are crea
by values 4 and 5 in the data cube shown in Fig. 2
respectively. Subcube 4 is created by the intersectio
of subcube 2 and subcube 3. The creation of subcu
is by value 7 in the data cube. A region outlined
dashed lines in Fig. 3 is the private region of the s
cube. The concept of private regions is used in look
up the value stored at a cell of a compressed box,
will be explained in Section 4.
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Fig. 3. Subcubes.

The address of a cell is composed of seve
coordinates. The number of coordinates of the add
is equal to the dimensionality of the box. We c
store an offset value instead of several values of
coordinates. The offset is a distance from the first
to the cell in an uncompressed box [10]. The dista
can be computed with either the row-major order
the column-major order. For example, with the ro
major order, the offset of address(3,4) is 4× 6 + 3.
The offset of a subcube is the offset of the first cell
the subcube.

A compressed box consists of a sequence of s
cubes. LetS be a compressed box, andS[i] be theith
subcube ofS. If i < j , the offset ofS[i] is smaller than
that ofS[j ]. S[i] is overlapped byS[i + 1], S[i + 2],
. . . , S[n] wheren is the number of subcubes inS.

Table 1 shows a compact representation of
subcubes depicted in Fig. 3. Subcube 2 is represe
by boundary((3,0), (5,5)) and the value 4. Becaus
all subcubes have the same last address, we
not need to store the last addresses of subcu
Therefore, we only store the offset andVsubcube for
each subcube. The final result of compressing

Table 1
A compact representation of the subcubes

Subcube First address Last address OffsetVsubcube

1 (0,0) (5,5) 0 0
2 (3,0) (5,5) 3 4
3 (1,2) (5,5) 13 5
4 (3,2) (5,5) 15 9
5 (4,3) (5,5) 22 16
.

order of the subcubes’ offsets.
Our method inputs a data cube partitioned into a se

of boxes, and produces a compact representation o
prefix-sums for each box. The algorithm compres
the set of boxes one by one. Moreover, during co
pression of ad-dimensional box, the algorithm on
keeps two(d − 1)-dimensional arrays which are pa
of the box.

The algorithm shown in Fig. 5 compresses a b
of a two-dimensional data cube by scanning the
only once. For each cell, the algorithm computes t
prefix-sum of the cell, and checks whether the P
cell corresponding to the cell is the first cell of
subcube. If the PC’s cell is the first cell of a subcu
the algorithm creates a compact representation of th
subcube with the address and the value of the P
cell. As shown in Fig. 4, the prefix-sum of the ce
(i, j) can be computed with the prefix-sum of the c
(i − 1, j), the prefix-sum of the cell(i, j − 1), the
value of the cell(i, j) and the prefix-sum of the ce
(i − 1, j − 1). If the prefix-sum of the cell(i, j) is
different from the prefix-sum of the cell(i − 1, j) and
the prefix-sum of the cell(i, j − 1), the cell(i, j) is
the first cell of a subcube. As mentioned above,
computation for the prefix-sum of the cell requir
the previous row and the current row of the PC on
Thus, in order to reduce the space requirement,
algorithm keeps only the previous row (=p_row) and
the current row (=c_row) of the prefix-sums. Th
algorithm processes the first cell in a row at lines 4
The remaining cells in the row are processed at line
7–11. Thefor statement in lines 12–13 copies t
values of c_row into p_row to process the next row

We can generalize the two-dimensional compr
sion algorithm to thed-dimensional compression a
gorithm by replacing the(2 − 1)-dimensional arrays
with (d − 1)-dimensional arrays. That is, the prev
ous (2 − 1)-dimensional array (=p_row) is replaced

Fig. 4. Computation of a prefix-sum.
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Algorithm Compressed SRPS
input: DC (a box of a two-dimensional data cube)

ell.
output:CB (a compressed box)
Begin
1. Initialize p_row[ ] to zero // p_row is an array storing the previous row of the prefix-sums
2. Create the subcube((0,0),DC[0][0])
3. for j = 0 to Ysize − 1 do {// Ysize is the size of Y axis
4. c_row[0] := p_row[0] + DC[0][j ] // c_row is an array storing the current row of the prefix-sums
5. if (c_row[0] �= p_row[0])
6. Create the subcube ((0, j), c_row[0])
7. for i = 1 to Xsize − 1 do {// Xsize is the size of X axis
8. c_row[i] := c_row[i − 1] + p_row[i] + DC[i][j ] − p_row[i − 1]
9. if (c_row[i] �= p_row[i] and c_row[i] �= c_row[i − 1])

10. Create the subcube((i, j), c_row[i])
11. }
12. for k = 0 to n − 1 do
13. p_row[k] := c_row[k]
14. }
End.

Fig. 5. The compression algorithm.
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by the current(d − 1)-dimensional array. In addition
the for statement at line 7 is replaced by(d − 1) for
statements, and so is thefor statement at line 12. Th
number of conditions at line 9 becomesd .

4. Looking up and updates

In this section, we present the lookup algorithm a
the update algorithm. The lookup algorithm retriev
the value stored in a compressed box without dec
pressing it. This algorithm serves the core function
the evaluation of the range sum queries. First, we
plain the lookup algorithm. Looking up a cell can
decomposed into two logical steps. The first step i
search the subcube that has the private region con
ing the cell. The private region of a subcube can
defined as follows.

Definition 2 (Private region). Let S be a compresse
box, andS[i] be theith subcube ofS. The private
region of S[i] is the part of the subcube that isnot
overlapped by other subcubes inS which have a
greater offset.

By Lemma 4.1, the first step can be replac
by searching the subcube that has the largest o
-

Lemma 4.1. If a cell c1 is contained in the private
region of a subcube S[i], S[i] has the largest offset
among those of subcubes containing c1.

Proof. If the offset ofS[i] is not the largest amon
those of subcubes containingc1, there isS[j ] such that
the offset ofS[j ] is greater than that ofS[i] andc1 is
contained inS[j ]. SinceS[j ] overlapsS[i], c1 is not
contained in the private region ofS[i]. This contradicts
the assumption. Therefore,S[i] has the largest offse
among those of subcubes containingc1. �

Fig. 6 shows the lookup algorithm. Since the pa
of a compressed box are sorted by the offset,
number of comparisons can be dramatically redu
by using the binary search. The lookup algorithm
composed of two parts. The first part, lines 1–13
the binary search to find the position to be started
the subsequent linear lookup. The first part exclu
the subcubes with larger offsets than the offset
the lookup cell from the candidate subcubes. T
second part, lines 14–18, scans the pairs from
position found by the first part to downside, pic
up the subcube that has the largest offset among
subcubes that contain the cell, and returnsVsubcube of
the subcube. The algorithm shown in Fig. 6 looks
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Algorithm LookUp
input: CB (compressed box)
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input: x,y (coordinates of the cell to be looked up)
output:Vsubcube
Begin
1. offset := offset value computed byx andy

2. low := 1
3. high := the number of pairs in theCB
4. while ((low + 1) < high) {
5. mid := (high + low)/2
6. offsetmid := offset value of themid’s pair in theCB
7. if (offset < offsetmid)

8. high := mid
9. else if (offsetmid < offset)

10. low := mid
11. else
12. return Vsubcube of themid’s pair in theCB
13. }
14. for (i = high; 0� i; i = i − 1) {
15. (xi , yi ) := the first address of theith pair in theCB
16. if (xi � x and yi � y)
17. return Vsubcube of the ith pair in theCB
18. }
End.

Fig. 6. The lookup algorithm.

Algorithm Update
input: CB (compressed box)
input: addr (address of the updated cell)
input: value (value to be added)
Begin
1. CheckCB whether there is a subcube whose first address is

equal toaddr
2. if (there is no subcube found in above scan) {
3. Create a subcubesubcube1 of addr (first address) and zero

(Vsubcube)

4. Create new subcubes using the intersection ofsubcube1 and
the subcubes inCB

5. Insertsubcube1 and the new subcubes created in above step
CB

6. }
7. Addvalue to theVsubcube values of subcubes whose boundar

containaddr
End.

Fig. 7. The update algorithm.

a cell in a 2-dimensional box. The algorithm can
easily extended for a higher dimensional box.

The update algorithm shown in Fig. 7 first chec
the compressed box whether there is a subcube w
first address is equal to the address of the updated
If not found, a new subcube corresponding to the
is inserted to the compressed box. More subcubes
.

adds the value of the cell to theVsubcube values of all
the subcubes whose boundaries contain the cell.

5. Experiments

We conducted several experiments to show
quantitative effect of our method. The data cu
used in the experiments is 4-dimensional, and
data stored in the data cube are randomly popula
We partitioned the corresponding PC into a set
disjoint boxes of equal size using the SRPS techniq
proposed in [8]. All the experiments were conduc
on a Linux machine with a 700 MHz Pentium I
processor, 512 MBytes main memory and a 20 GBy
hard disk.

First, we measured the compression ratio of
method. The compression ratio is expressed as−
B/A, whereA is the size of the original data andB
is the size of the compressed data (higher is bet
Fig. 8(a) shows the compression ratios onboxes of
various sizes. Only 2% of cells in eachbox is valid.
The result indicates that the compression ratio on
smallestbox is very high. However, as the size
the box increases, the compression ratio decrea
The reason is that, as the size of thebox increases
the number of subcubes created by the intersectio
other subcubes also increases.

Fig. 8(b) shows the compression ratios on abox
with the size of 5× 5× 5× 5 as a function of the per
centage of valid cells. When the percentage of v
cells is low, the compression ratio is very high. Ho
ever, as the percentage of valid cells increases,
compression ratio decreases. This is also due to
reason mentioned above. Fig. 8(c) plots the comp
sion ratios for boxes of various dimensionalities. Ty
ically, as the dimensionality increases, the sparse
also increases sharply [4,7]. In this experiment,
length of one dimension is fixed to 5, and 2% of cells
valid when the dimensionality is 4. As the dimensio
ality increases, the compression ratio increases slo

In the next experiment, we measured the respo
times of range-sum queries executed on various cu
Table 2 shows the parameters of the experiment.
randomly generated four synthetic data sets. M
data cubes contain many small clustered multi-dim
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Fig. 8. Compression ratio.

Table 2

Experimental parameters
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Parameter Value

The size of the data cube 155× 155× 155× 155
Box size 5× 5× 5× 5
No. of boxes 923 521
Page size 8 KBytes
Buffer size 2000 pages
Minimum size of one dimension of a
query range 7
Maximum size of one dimension of a
query range 13

sional data (dense regions), with sparse points s
tered around in the rest of the space [11]. To gene
synthetic data sets which closely resemble real d
we used a nonzero value generation method wh
consists of two steps. The first step randomly gen
ates nonzero values for random cells throughout
data cube, and the second step selects some den
gions and randomly generates nonzero values in th
dense regions. The method generates 20% of the
tal valid cells in the first step and the remainder
the total valid cells in the second step. Each tuple
these data sets contains anattribute for each dimen
sion and an attribute to store the measure value.
ble 3 shows details of our generated data sets. F
shows a comparison of the response times in exe

Table 3

Synthetic data sets
e-

Fig. 9. Performance of query processing.

ing 8000 range-sum queries which are randomly g
erated.

As shown in Fig. 9, the compressed SRPS met
shows the best performance. The response tim
range-sum queries executed on compressed S
cubes increases as the percentage of valid cells
creases. The reason is that as the percentage of
cells increases, the compression ratio decreases. Sin
the sizes of SRPS cubes with differing number of va
cells are the same, the query performance of the S
is nearly constant regardless of the percentage of v
cells. Like compressed SRPS, as the percentag
valid cells increases, the response times of range-
queries executed on the data cube and the blocke
increases.
t D
Data set A Data set B Data set C Data se

Percentage of valid cells 1% 2% 3% 4%
Compression ratios 0.93 0.81 0.68 0.51
No. of dense regions 1539 3078 4617 6156
Size of a dense region 10× 10× 10× 10
No. of nonzero values in a dense region 3000



H.-G. Kang et al. / Information Processing Letters 92 (2004) 99–105 105

6. Conclusion
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We proposed the compressed SRPS method w
was designed to reduce the space requirement o
PC. A distinguished feature of this method is th
searches and updates can be done without dec
pressing. This method reduces the space require
for storing prefix-sums, and improves the query p
formance.
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